Evolução média móvel média. Como você pode imaginar, estamos olhando algumas das abordagens mais primitivas da previsão. Mas espero que este seja, pelo menos, uma introdução interessante para algumas das questões de informática relacionadas à implementação de previsões em planilhas. Nessa linha, continuaremos começando no início e começaremos a trabalhar com as previsões da Moeda em Movimento. Previsões médias móveis. Todos estão familiarizados com as previsões da média móvel, independentemente de acreditarem estar ou não. Todos os estudantes universitários fazem-no o tempo todo. Pense nos resultados do teste em um curso onde você terá quatro testes durante o semestre. Vamos assumir que você obteve um 85 no seu primeiro teste. O que você prever para o seu segundo resultado de teste O que você acha que seu professor prever para o seu próximo resultado de teste? O que você acha que seus amigos podem prever para o seu próximo resultado do teste? O que você acha que seus pais podem prever para o seu próximo resultado? Todos os blabbing que você pode fazer para seus amigos e pais, eles e seu professor provavelmente esperam que você consiga algo na área dos 85 que você acabou de receber. Bem, agora vamos assumir que, apesar de sua auto-promoção para seus amigos, você superestimar-se e imaginar que você pode estudar menos para o segundo teste e então você obtém um 73. Agora, o que todos os interessados e desinteressados vão Preveja que você obtém seu terceiro teste. Existem duas abordagens muito prováveis para que eles desenvolvam uma estimativa, independentemente de compartilharem com você. Eles podem dizer a si mesmos, esse cara está sempre soprando fumaça sobre seus inteligentes. Hes vai ter outros 73 se tiver sorte. Talvez os pais tentem ser mais solidários e dizer, muito, até agora você obteve um 85 e um 73, então talvez você devesse entender sobre obter um (85 73) 2 79. Eu não sei, talvez se você fez menos festa E não mexia com a doninha em todo o lugar e se você começou a fazer muito mais estudando, você poderia obter uma pontuação mais alta. Duas dessas estimativas são, na verdade, previsões médias móveis. O primeiro está usando apenas o seu resultado mais recente para prever seu desempenho futuro. Isso é chamado de previsão média móvel usando um período de dados. O segundo é também uma previsão média móvel, mas usando dois períodos de dados. Vamos assumir que todas essas pessoas que estão se abalando na sua ótima mente ficaram chateadas e você decide fazer bem no terceiro teste por suas próprias razões e colocar uma pontuação maior na frente do quotalliesquot. Você faz o teste e sua pontuação é realmente um 89, todos, incluindo você, está impressionado. Então, agora você começa o teste final do semestre e, como de costume, você sente a necessidade de incitar todos a fazer suas previsões sobre como você fará no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. O que você acredita é o Whistle mais preciso enquanto trabalhamos. Agora, retornamos à nossa nova empresa de limpeza, iniciada pela sua meia-irmã separada chamado Whistle While We Work. Você possui alguns dados de vendas passadas representados pela seção a seguir de uma planilha. Primeiro apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula celular para as outras células C7 até C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que não precisamos realmente fazer as previsões para os períodos passados para desenvolver nossa previsão mais recente. Isso é definitivamente diferente do modelo de suavização exponencial. Eu incluí o quotpast predictionsquot porque vamos usá-los na próxima página da web para medir a validade da previsão. Agora, eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula celular para as outras células C6 até C11. Observe como agora apenas as duas peças históricas mais recentes são usadas para cada previsão. Mais uma vez eu incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são importantes para aviso prévio. Para uma previsão média móvel de m-período, apenas os valores de dados mais recentes são usados para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpast, observe que a primeira previsão ocorre no período m 1. Essas duas questões serão muito significativas quando desenvolvamos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão média móvel que pode ser usada de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que deseja usar na previsão e na matriz de valores históricos. Você pode armazená-lo em qualquer livro de trabalho que desejar. Função MovingAverage (Histórico, NumberOfPeriods) As Single Declarando e inicializando variáveis Dim Item As Variant Dim Counter As Integer Dim Accumulation As Single Dim HistoricalSize As Integer Inicializando variáveis Counter 1 Accumulation 0 Determinando o tamanho da matriz histórica HistoricalSize Historical. Count Para o contador 1 para NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha para que o resultado do cálculo apareça onde deveria gostar do seguinte. Forecasting por Técnicas de Suavização Este site faz parte dos objetos de aprendizado de E-Labs JavaScript para a tomada de decisões. Outro JavaScript nesta série é categorizado em diferentes áreas de aplicações na seção MENU nesta página. Uma série temporal é uma sequência de observações que são ordenadas a tempo. Inerente à coleta de dados obtidos ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são o alisamento. Essas técnicas, quando aplicadas corretamente, revelam mais claramente as tendências subjacentes. Digite as séries temporais em ordem de linha em sequência, a partir do canto superior esquerdo e o (s) parâmetro (s), e clique no botão Calcular para obter uma previsão em um período de antecedência. As caixas em branco não estão incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados, use a tecla Tab, sem seta ou digite as chaves. Características das séries temporais, que podem ser reveladas examinando seu gráfico. Com os valores previstos e o comportamento dos resíduos, modelagem de previsão de condições. Médias móveis: as médias médias classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar as séries temporais mais suaves ou mesmo para enfatizar certos componentes informativos contidos nas séries temporais. Suavização exponencial: Este é um esquema muito popular para produzir uma série de tempo suavizada. Considerando que, nas Médias móveis, as observações passadas são ponderadas de forma igual, Suavização exponencial atribui pesos exponencialmente decrescentes à medida que a observação envelhece. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Suavizado Exponencial Duplo é melhor nas tendências de manuseio. O Triple Exponential Suavização é melhor no manuseio de tendências da parábola. Uma média móvel ponderada exponencialmente com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel ponderada exponencialmente com uma constante de suavização igual a 0,04878. Holst Linear Exponential Suavização: Suponha que as séries temporais não sejam sazonais, mas que mostram a tendência de exibição. O método Holts estima tanto o nível atual como a atual tendência. Observe que a média móvel simples é um caso especial do alisamento exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0.40 geralmente é efetivo. No entanto, pode-se realizar uma pesquisa em grade do espaço dos parâmetros, com 0,1 a 0,9, com incrementos de 0,1. Então, o melhor alfa tem o menor erro absoluto médio (erro MA). Como comparar vários métodos de suavização: embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais ampla é o uso de comparação visual de várias previsões para avaliar sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário traçar (usando, por exemplo, Excel), no mesmo gráfico, os valores originais de uma variável de séries temporais e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as previsões passadas por Smoothing Techniques JavaScript para obter os valores de previsão passados com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ideais ótimos, ou mesmo próximos, por testes e erros para os parâmetros. O alisamento exponencial único enfatiza a perspectiva de curto alcance, ele define o nível para a última observação e baseia-se na condição de que não há nenhuma tendência. A regressão linear, que se adapta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa o longo alcance, que está condicionado à tendência básica. Holder linear exponencial suavização capta informações sobre a tendência recente. Os parâmetros no modelo Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande e as tendências-parâmetro devem ser aumentadas se a direção da tendência recente for suportada pelos fatores causais. Previsão de curto prazo: observe que cada JavaScript nesta página fornece uma previsão de um passo a frente. Para obter uma previsão de duas etapas. Simplesmente adicione o valor previsto para o final de seus dados da série temporal e clique no mesmo botão Calcular. Você pode repetir este processo por algumas vezes para obter as previsões de curto prazo necessárias. Vazões simples. Médias móveis exponentes As médias móveis são mais do que o estudo de uma sequência de números na ordem sucessiva. Os primeiros praticantes da análise de séries temporais estavam realmente mais preocupados com os números das séries temporais individuais do que com a interpolação desses dados. Interpolação. Sob a forma de teorias e análises de probabilidade, vieram muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez entendida, várias curvas e linhas moldadas foram desenhadas ao longo da série temporal em uma tentativa de prever onde os pontos de dados podem ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. A análise de gráficos pode ser rastreada até o Japão do século 18, no entanto, como e quando as médias móveis foram aplicadas pela primeira vez para os preços de mercado, continua sendo um mistério. Em geral, entende-se que as médias móveis simples (SMA) foram usadas muito antes das médias móveis exponenciais (EMA), porque as EMAs são construídas na estrutura SMA e o contínuo SMA foi mais facilmente compreendido para fins de traçado e rastreamento. (Você gostaria de um pouco de fundo de leitura) Verificando as médias móveis: o que são) Média móvel simples (SMA) As médias móveis simples se tornaram o método preferido para rastrear os preços do mercado porque são rápidos em calcular e fácil de entender. Os praticantes do mercado precoce operaram sem o uso das métricas de gráfico sofisticadas em uso hoje, então eles dependeram principalmente dos preços do mercado como seus únicos guias. Eles calcularam os preços do mercado à mão, e representaram esses preços para denotar tendências e direção do mercado. Este processo foi bastante tedioso, mas provou ser bastante lucrativo com a confirmação de novos estudos. Para calcular uma média móvel simples de 10 dias, basta adicionar os preços de fechamento dos últimos 10 dias e dividir por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento ao longo de um período de 20 dias e dividindo em 20, e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é um meio de preços - um subconjunto. As médias móveis são denominadas em movimento porque o grupo de preços utilizado no cálculo se move de acordo com o ponto do gráfico. Isso significa que os dias antigos são descartados a favor de novos dias de fechamento, portanto, um novo cálculo sempre é necessário, correspondente ao prazo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e caindo no 10º dia e o nono dia é descartado no segundo dia. (Para obter mais informações sobre como os gráficos são usados na negociação de divisas, consulte o nosso Passo a passo básico do gráfico.) Média móvel exponencial (EMA) A média móvel exponencial foi refinada e mais comumente usada desde a década de 1960, graças a experimentos de praticantes anteriores com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples exigida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização que 2 (1N) onde N é o número de dias. Um EMA 2 de 10 dias (101) 18,8 Isso significa que uma EMA de 10 períodos pesa o preço mais recente 18,8, um EMA 9,52 e EMA de 20 dias com um peso de 3,92 no dia mais recente. A EMA funciona ponderando a diferença entre o preço dos períodos atuais e o EMA anterior e adicionando o resultado ao EMA anterior. Quanto menor o período, mais peso se aplica ao preço mais recente. Linhas de montagem Por esses cálculos, os pontos são plotados, revelando uma linha apropriada. As linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados principalmente para seguir as tendências. Eles não funcionam bem com os mercados de alcance e os períodos de congestionamento porque as linhas adequadas não indicam uma tendência devido à falta de altos maiores evidentes ou baixos baixos. Além disso, as linhas de ajuste tendem a permanecer constantes sem um toque de direção. Uma linha de montagem ascendente abaixo do mercado significa uma longa, enquanto uma linha apropriada de queda acima do mercado significa um curto. (Para obter um guia completo, leia nosso Tutorial de média móvel.) O objetivo de empregar uma média móvel simples é detectar e medir as tendências, suavizando os dados usando os meios de vários grupos de preços. Uma tendência é manchada e extrapolada em uma previsão. O pressuposto é que os movimentos da tendência anterior continuarão. Para a média móvel simples, uma tendência a longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com uma suposição razoável de que a linha de montagem será mais forte do que uma linha EMA devido ao maior foco nos preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, uma EMA deve reduzir os atrasos na média móvel simples, de modo que a linha de montagem irá reduzir preços mais perto do que uma média móvel simples. O problema com a EMA é o seguinte: é propenso a quebras de preços, especialmente em mercados rápidos e períodos de volatilidade. O EMA funciona bem até que os preços rompem a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar aumentar a duração do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de evolução da tendência Como indicadores de atraso, as médias móveis servem bem como suporte e linhas de resistência. Se os preços se reduzem abaixo de uma linha de ajuste de 10 dias em uma tendência ascendente, as chances são boas de que a tendência ascendente pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços caírem acima de uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nesses casos, empregue uma média móvel de 10 e 20 dias em conjunto e espere que a linha de 10 dias atravesse acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direção de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias cruza abaixo da média de 200 dias, é chamada de cruz da morte. E é muito competitivo para os preços. Uma média móvel de 100 dias que atravessa acima de uma média móvel de 200 dias é chamada de cruz dourada. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência. É apenas a curto prazo que a SMA tem ligeiros desvios de sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência ao suavizar os movimentos de preços. A análise técnica às vezes é referida como uma arte em vez de uma ciência, que leva anos para dominar. (Saiba mais no nosso Tutorial de Análise Técnica.)
No comments:
Post a Comment